A much easier take on an Android garage door opener

[Andy] is taking the complexity of a smartphone-controlled garage door down a notch with this project. He’s not interested in checking on the state of the door (open or closed) using a video feed, or in controlling the thing from anywhere in the world. He just wants to use his Android as the remote control and we say amen to that.

The circuitry in the garage is pretty simple. A relay is used to simulate a button press on the in-garage wired opener. This relay is driven by an Arduino which uses a Bluetooth shield for connectivity. Since his Android phone has a Bluetooth modem the rest of the project is just app development. As you can see in the video, the app automatically connects to the Arduino when it is launched, then waits for the button press to send the electronic equivalent of ‘Open Sesame”.

The project covers a series of posts so if you want to see how he got the app up and running make sure to browse through his archives. The next iteration for this app needs to be a background widget that enables Bluetooth, connects to the Arduino, and send s the open command all with one press.

[Read more…]

Android app review: ADSdroid gives you every datasheet, ever

A few months ago when I reviewed the Android electronic reference app ElectroDroid, I made the offhand remark that a front end app for alldatasheet.com would be a killer mobile electronic reference app. [András Veres-Szentkirályi] accepted my challenge and built ADSdroid, the unofficial Android app for alldatasheet.com. You can check out my complete review after the break.

[Read more…]

Open sourcing everything… there's an app for that

What happens if you’re a prolific developer and decide to release all of the source code from your work? Well, you should get a huge pat on the back from all interested parties. And so we say thank you to [Hunter Davis] for releasing the source code for his 70+ Android apps. But just making the decision isn’t the end of things, you’ve got actually get the code out there. And herein lies the hack. Instead of archiving and posting all of those projects he wrote a script to crawl, init, and push his projects to Github automatically.

This process is made pretty easy because of the Github API. Looks like he used version 2 for his script but you’ll want to check out version 3 if you’re looking to write your own script. His script takes the API key and username as command line arguments, then traverses his local source tree. Along the way it uses some text manipulation to sanitize the directories for use as the name of the repository. Once that’s established it steps into the directory, creates a repository, adds and commits all the files, then pushes them to Github.

Following [Hunter’s] example makes it really easy to share your code. We hope more will follow suit, putting their work out there for others to learn from and build upon.

We’ve seen some hardware hacks from [Hunter] as well. He did a bunch involving the ZipIt, as well as some work with playing games with a Dockstar.

[via Reddit]

A simple project to get you started with the Android ADK

simple-adk-exercise

If you just got your hands on a shiny new Android phone and are looking for a fun project to try out, you might want to check out this simple Arduino exercise that [Mike Mitchel] put together. Everyone needs a starting off point for hacking, and [Mike] thought that combining and Arduino and Android handset together for the purpose of temperature sensing and light metering would be a great place to begin.

The prerequisites for this project are a bit beyond a simple breadboard and a few ICs, requiring an $80 Android ADK board to go along with your phone and Arduino. If your focus is going to be on interfacing your phone with microcontrollers however, it’s purchase you’ll make sooner than later anyhow.

The setup is pretty simple as you might expect. A photocell and TMP36 temperature sensor are connected to the Arduino, then with a bit of code and USB host magic, the Android app shows the temp and amount ambient light present in the room.

[Mike] has made all of his easy to read and well commented code available online, so be sure to check it out if you have been thinking about (but putting off) playing around with the Android ADK.

Android on your netbook

Looks like there’s a pretty easy way to install Ice Cream Sandwich, the newest version of Android, on your Netbook. Actually this is limited to a few types of hardware including netbooks like the eeePC. That’s because the ISO files used during installation have been tailored to the hardware used on those devices. As with other Linux distros, the ISO file can be loaded on a thumb drive using Unetbootin. From there you can give it a whirl as a Live CD (or USB as it were) or choose to install it on your hard drive. We haven’t given it a spin as the eeePC version doesn’t want to boot on our Dell Mini 9, but we don’t see a reason why this couldn’t be set up as a dual boot option.

Now why would you want to run Android on your netbook? We’ve already seen that there’s a way to run Android apps in Ubuntu. We bet some people just love Android, and others just hate the Unity desktop that Ubuntu now uses… especially when the Netbook Remix had a lot of good things going for it.

Adding speech control to an old robotic arm

[Joris Laurenssen] has been hanging onto this robotic arm for about twenty years. His most recent project uses some familiar tools to add voice control for each of the arm’s joints.

The arm has its own controller which connects via a DB-25 port. [Joris’] first task was to figure out what type of commands are being sent through the connection. He did some testing to establish the levels of the signals, then hooked up his Arduino and had it read out the values coming through the standard parallel connection. This let him quickly establish the simple ASCII character syntax used to command movement from the device. There’s only eight command sets, and it didn’t take much work to whip up a sketch that can now drive the device.

The second portion of the project is to use voice commands to push these parallel signals to the arm. Instead of reinventing the wheel he decided to use the speech recognition feature of his Android phone. He used Scripting Layer for Android (SL4A) and a Python script to interpret commands, push them to his computer via Telnet, and finally drive the arm. We’ve embedded the video demo after the break. He gives the commands in Dutch but he overlaid comments in English so you can tell what’s going on.

[Read more…]