Hackaday Links May 13th 2012

Amazing ass… for a robot

Yep, Japan still has the creepy robotics market cornered. Case in point is this robotic posterior. Don’t worry, they’ve included a dissection so you can see how the insides work too. [via Gizmodo]

Time-lapse camera module results

As promised, [Quinn Dunki] sent in a link to the photo album from her time lapse camera module. In case you missed it, she built it in a Tic Tac container and stuck it to the side of a racecar.

Kinect controlled killbot

Didn’t we learn anything from RoboCop? We could totally see this Kinect controlled robot (which happens to weigh five tons) going out of control and liquefying an unsuspecting movie extra standing near it. [via Dvice]

Laser popping domino balloons

apparently [Scott] has set a world record by using a laser to pop a line of 100 red balloons. We enjoy seeing the size of the 1W laser that does the popping… it can’t be long now before we get a hold of handheld laser pistols. [via Gizmodo]

Laser balloon targeting

If that last one was a bit of a let down, you might enjoy this automatic targeting system more. The blue triangle shaped icon is setting a target, the amber triangles have already been targeted. Once all the balloons are identified a laser quickly zaps each in order. Quite impressive, although no details have been provided. [Thanks everyone who sent in a link to this]

http://gizmodo.com/5909007/we-hope-lasers-popping-hundreds-of-balloons-is-the-new-dominos-fad

Making Laser adjustments with an SNES gamepad

Gaming has infiltrated everything around us. It seems that any time a control interface is needed, the first thought to many current hacker’s minds are the familiar controls from the video games we grew up with. In this example, [eljaywasi] needed a way to control the wavelength of light coming out of a laser. We don’t know exactly how he’s actually changing the wavelength, but we do know he’s using an SNES gamepad as his interface. You can see a red and a blue LED located on the front of the pad, so it may be that two buttons would have sufficed. We don’t care, we like the SNES pad better.

Laser so easy to build anyone can burn their eyes out

The boys over at North Street Labs built a handheld burning laser and made it look super simple. Well it’s not. We don’t think it’s hard either, but the only reason it looks so easy is because they really know what they’re doing.

The first step was to source the best parts for the application. They’re using a handheld flashlight body which is small but still leaves plenty of room for the components. Next they ordered a quality lens made for the wavelength of the diode, as well as a prefab driver board.

Now the real build starts. They hit the metal lathe and machined a housing for the diode out of some aluminum stock. To marry the parts together they applied some thermal paste, and used a wrench socket to protect the diode from the pressure the vice jaws exert. It slid into place and the whole thing fits perfectly in the flashlight housing. The project wouldn’t be complete without video proof of it burning stuff. You’ll find that after the break.

[Read more…]

[Dino]'s one-year extravaganza is a laser oscillograph

Readers of Hackaday may have noticed the weekly posts featuring whatever [Dino Segovis] of Hack A Week has cooked up in the last seven days. For [Dino]’s one-year anniversary, he’s pulled out all the stops and put together one of his coolest hacks to date. It’s a laser oscillograph that projects waveforms on a screen just like an oscilloscope. What’s more, the entire contraption is built out of a dead hard drive and a few motors and mirrors [Dino] had lying around.

The build uses an old hard drive to draw the vertical component of the waveform. Because hard drives usually use a voice coil to move the heads around the platter, it’s very easy to connect a hard drive directly to the headphone output of [Dino]’s laptop. Playing a sine wave on his computer makes the drive heads move up and down, but [Dino] still another dimension. For that, he used a rotating mirror that reflects the wave onto a paper screen.

[Dino]’s finished build isn’t that much different from an oscilloscope or projection TV. It’s possible for [Dino] to improve upon his build and make a genuine vector display with the addition of additional electronics and optics, but we’re not expecting that until at least the two-year anniversary.

Check out [Dino]’s build video after the break.

[Read more…]

Following faces with OpenCV and Arduino

[youtube=http://www.youtube.com/watch?v=lD4uFD7j0AU&w=470]

[Marco] has had some fun with OpenCV in the area of face tracking. Using an older laser project, he has cobbled together a system that will track a face and put a laser on it. While he is just using this as a proof of concept, it goes without saying that you probably shouldn’t mount a laser on a face tracker. However, stuffing this into a myKeepon wouldn’t be a horrible thing.

[Marco] shares the process of getting the OpenCV bit working in this writeup, you’ll have to refer back to his laser gun project for the physical build.

 

[via Adafruit]

 

Build your own line laser for 3D scanning

diy-line-laser

[Valentin] wanted to experiment with 3D scanning some objects he had around the house, but says he didn’t want to buy a line laser for the project since they are pretty expensive. Fortunately, he had some random components sitting in his parts bin, and he was able to build his own line laser without spending a ton of money.

His tutorial actually covers two different methods of building line lasers, both of which use parts that you likely have on hand already.

His first build involves gluing a small square mirror to a flat platform, which he then mounted on a salvaged DC motor. Once the motor starts spinning, the cheap laser pointer he has aimed at the mirror draws a perfect line across whatever medium he is scanning.

His second line laser uses parts donated from an old hard drive that he no longer used. He removed the drive’s read head from the chassis and mounted a small mirror on the actuator arm before firing up his laser. With the laser aimed at the mirror, he applied an unspecified AC current to the motor, which caused it to oscillate and draw a line similar to his first setup.

While they might not be professionally-built scanning lasers, [Valentin’s] efforts produced some decent images, as you can see on his site.

Continue reading to see a short video of his DC motor laser line in action.

[Read more…]