Hackaday around the web and into the future

Like everyone else, we’re scattered all over the web. We would be silly not to be getting our information out there in as many ways as we can manage. We promise that the site always comes first, but you can also find us on Facebook, G+ (yes, we’re approved this time), twitter, and we even have a flickr group where people post pictures of their projects!

We’ve got some stuff planned for the near future that we’re excited about too.

1.We’re working behind the scenes to bring out a new template for the site. This will allow us to clean things up a bit and hopefully make browsing a little easier (searching too!). Don’t worry, we’re not changing the logo.

2.We are also planning on starting some “show and tell” sessions on G+. We love what Adafruit has been doing with theirs, and we’re hoping to join in on the fun. We realize some of you are opposed to g+, so feel free to offer other solutions to do the show and tell, we would be happy to hear them. They will be recorded and linked on the site here, so you can follow along even if you can’t join.

3.We’re bringing back the store! This time, however, we’ll have a full spread of stuff. We’re not making it in our garages anymore. For now, it will be clothing and accessories, but we’re considering doing some electronics and tools in the near future as well.

The writers are also very busy with things on the web. We’re not always locked to our keyboards slaving away. If you want to be able to follow along with us, you can find our information after the break.

[Read more…]

Mapping the motor cortex

[Bruce] sent us another fantastic final project from the ECE4760 class at Cornell. What you see above is an array of 36 near infra red LEDs shining into this young man’s brain for the purpose of spectroscopy. Light bounces back differently based on brain activity (blood flow). For this project, they are mapping their motor cortex and displaying it on a PC using a java app. You can see the entire rig, as well as the readings in the two videos after the break.

When this tip came in, one of our writers,[Jesse Congdon], chimed in as well.

hey I actually used to work in this as an intern, at Upenn. two frequencies of near infrared light are used that both penetrate skin and bone, one bounces off of blood in general and the other bounces off oxygenated blood. Since your brain actually regulates the flow of blood to parts that are in use you can see brain activity by looking at blood flow, but then you also need to see if the brain is actually using that blood, so oxygenation gives you a full picture. The frontal cortex is a nice place to measure cause there is no hair on that portion of the skull, and it gives you emotional responses and the “aha!” moment when you figure out a problem.

One article from way back said the system was going to be used as a lie detector, since when you lie you think about the truth and the lie simoltaneously and show an increase in activity.

It’s tough though to categorize a response since you can’t really establish “base line” activity by turning off the brain

[Read more…]

Hacking magnets into your skin

[Dave] loved his iPod nano so much that he implanted 4 magnets in his arm to hold it.

Ok, go ahead and shout “fanboy” at your screen and say something snide about apples products or lament the poor working conditions at foxconn. Got it out of your system? Cool.

Actually, if we had to guess, [Dave] really isn’t doing this all for his love of the device or the company. It is much more likely that he is just really into body modding and this was a convenient theme for a mod. We find the idea pretty interesting. We’ve seen implants before, but they are usually of the RFID type. Typically those are used for some kind of security or computer control.

Implanting a magnet, however, is interesting because it could almost give you a “sixth sense” You could detect what was magnetic, and how magnetic it was. If we were going to do something like this, we would probably go fully sub-dermal though to help avoid infection.

What other kind of implants could you realistically do with today’s technology to give yourself other senses?

Heathkit closes down, again.

With this rather large flip flop, Heathkit has closed its doors… again. The company that so many of us remember fondly from their myriad of electronics kits originally closed its doors in 1992. Last year, there was an announcement of a revival and a call for kit submissions. Unfortunately, it looks like that just didn’t work out. While this isn’t an official announcement, the facts appear to line up to Heathkit closing their doors.

If you’d like to re-live a few fond memories, here’s a Heathkit unboxing at EMSL.

Destroying stuff for the good of all mankind

NC state’s constructed facilities laboratory is a place where things get broken for science. We’ve shared several videos lately of things being sliced, diced, sheared, exploded, and smashed, purely for the fun of it, and now we feel like we should compensate a little bit. No, we’re not going to undergo physical punishment, instead, we’ll share some educational destruction.

In the video after the break, you can see a few things pushed to their absolute limits, then a bit further. The Constructed Facilities Laboratory is a research lab that tests the limits of some of the infrastructure that we rely on daily. Bridges, roads, walls, support beams. Someone needs to figure out what they can really handle. Even more interesting than the short video below, are all the different videos in the tour that explain how the facility is constructed an how they operate. Take a few minutes and enjoy the tour.

[Read more…]

The trials of working with brushless DC motors for the first time.

We’ve all worked with DC motors at some point. Even if you aren’t a big hardware person, you’ve probably at least picked up a motor as a kid and touched a battery to the leads causing it to whir to life. These are usually standard DC motors and not their brushless relatives. Brushless motors require a bit more work since you are manually controlling things that are normally taken care of with the brushes. This article won’t teach you how, rather it will show you the mistakes one person made in his inaugural effort to use them. It is mildly amusing, but the project summary that he’s using them for seems even more interesting.

The job that’s been paying my bills and keeping me away from artsy-fartsy circuits for the past six months involves making a set of these enormous robot doors for a Certain Very Fancy Person’s house. Each door is 13 feet tall, around 7 feet wide, and weighs 1500 pounds. There are 66 of them in said house, and more in the servant quarters(!?!). The circuits on board each door have to handle running an onboard air compressor (which regulates a pneumatic weatherseal) as well as keeping track of temperature to linearize the pressure sensors when the weather gets cold. They also have to charge and maintain sealed lead acid batteries. They have commutated power rails. They have to communicate over said power rails, and do so using an capacitively-coupled data slicer and a proprietary protocol I wrote. This protocol has to be robust enough to bootload the processor over. It’s a proper embedded systems job.

Wow.

[via Adafruit]