DCPU-16 running Pac-Man

If you’ve been trying to think of stuff you can do with the DCPU-16 this may inspire you to write a clone of  a classic game.

This version of Pac-Man was written using a sprite system with a 16 color pallette. It runs in an HTML-based emulator, so you can even monkey around with the assembly code to help you figure out how it works. But if you’re not into writing code that is this machine-close, you can just click the ‘run’ button and use your keyboard arrows to play through a level or two. You’ll notice there’s only one game board available so far and some things are still missing like that familiar waka-waka as he gobbles up the dots. Let us know if you mange to extend the features of this version.

In case you missed it, this emulator is running the DCPU-16 spec from Notch’s new game, 0x10c (. We have no idea how that’s going to shape up, but getting in on the game early will pay off it turns out to be as popular as Minecraft.

Getting 12 year olds to learn assembly programming

[notch], the mastermind behind Minecraft, is working on a new game. It’s called 0x10c (pronounced ‘trillek’, we think) and promises to teach an entire new generation the joys of assembly programming on a 1980s-era computer.

The setup for the game is nerdy/awesome enough to make [Douglas Adams] blush; a ‘deep sleep core’ was invented in 1988 that attached to the 16-bit computers of the day. This core was big endian, where the DCPU-16 (the computer in the game) was little endian. What was supposed to be a one-year hibernation turned into a 281 Trillion year coma, the Universe is dying, and everyone from 1988 is just waking up.

The game features a fully functional 16-bit CPU that controls every aspect of your spaceship. The specs for the DCPU-16 have been released and there are several emulators available.

Already, a few communities have been set up around the web to discuss how to program the DCPU-16: the official forum of 0x10c, the 0x10c subreddit, and another dedicated to programming the in-game computer. Already there’s a C-like language that compiles executables for the DCPU and a Game of Life implementation.

We know this isn’t a usual Hackaday post. Despite this, we’re fairly certain a good percentage of our readership will be programming a DCPU-16 in the next year. It just might be time to crack the books and learn how to build a compiler and OS. The dragon book (Compilers Principles, Techniques, and Tools, Aho, Sethi, Ullman, 1985) is very good, and [Andy Tanenbaum]’s Operating Systems Design and Implementation is how [Linus Torvalds] got his start.

One more thing: we’re going to be running a contest for the best physical implementation of the DCPU-16 in a few months. We’ll wait until the in-game hardware is nailed down, along with any peripherals [notch] plans to add. Right now the prizes are some HaD schwag, but that may change. Further info with updates pending, but you’re free to start working now.