2 horse power 3 wheeled beast

This beast above is the result of what is probably the coolest class project ever.  The instructors[Michael Ham] and [Kenny Ham] gave their students a pile of junk and said “build something”. The goal was a “vehicle that could recharge itself”. In the pile were motorcycle tires, an old classroom seat, the front suspension from a VW bug, some old power drills, a solar panel, and a battery, amongst other bits and pieces.  What you see above was the result.  While it may not win any drag races any time soon, it was a fantastic class project that had the students thinking their way around many problems.

The videos on the project page show that this thing isn’t quite as sluggish as we would have expected for its size.

[via Make]

Using diodes and transistors as solar cells

When you get down to it, solar cells aren’t much different from the diodes and transistors in your parts drawers or inside your beloved electronics. They’re both made of silicon or some other semiconductor, and surprisingly can produce electricity in the presence of light. Here’s two semiconductors-as-solar panel projects that rolled into the tip line over the past few days.

[Steven Dufresne] cut open a 2N3055 power transistor to expose the semiconductor material to light. In full sunlight, he was able to produce 500 millivolts and 5.5 milliamps. In other words, he’d need around 5000 of these transistors wired up to turn on a compact fluorescent light bulb. A small calculator has a much lower power requirement, so after opening up five transistors he was able to make a solar-powered calculator with a handful of transistors.

[Sarang] was studying solar cells and realized a standard silicon diode is very similar; both are p-n junctions and the only real difference is the surface area. He connected a 1N4148 to a multimeter and to his surprise it worked. [Sarang] is able to get about 150 millivolts out of his diode with the help of a magnifying glass. While he doubts his diode is more efficient than a normal solar cell, he thinks it could be useful in low-cost, low power applications. We’re thinking this might be useful as a high-intensity light detector for a solar cooker or similar.

After the break, you can check out the videos [Steven] and [Sarang] put up demonstrating their solar cells.

[Read more…]

Solar charging a Buddha Machine

While having ambient music playing in the background can lead to a more relaxed state of mind, we can’t imagine the annoyance of having to replace the batteries constantly. Thankfully, [Phil] added solar charging to his Buddha Machine so he won’t have to worry about batteries anymore.

If you’re not familiar, the Buddha Machine is a small plastic box that loops nine tracks of ambient music inspired the Buddhist temples of south-east Asia. There’s not much to these little boxes; they’re just a plastic box with a speaker, on/off knob and an EEPROM loaded up with samples of music.

A year or so ago, the people behind the Buddha Machine posted a prototype of a solar-powered meditative noise box that was unfortunately never made. Thankfully, [Phil Stearns] stepped in posted a guide on how to convert a AA-powered Buddha Machine to solar power.

The modification is incredibly simple: after replacing the disposable AA batteries with NiMH rechargeable, two wires are swapped connecting the battery compartment with the main PCB and the box is sealed up again. Now, whenever one of [Phil]’s solar panels is connected to the power jack the batteries begin charging. [Phil] says he can get two days worth of runtime with a full 8-hour charge, so he shouldn’t need any batteries for his Buddha Machine anytime soon.