Dexterity enhancing guitar

[Justin Lange’s] dad loves playing guitar, but an accident left him with nerve damage that makes it pretty much impossible these days. He just doesn’t have the dexterity needed to form the cords using his left hand. But his son’s hacking skills are helping him get back into it. [Justin] built a button-based add-on that forms the cords for him.

The build has two parts. A frame mounts over the finger board with slots for eighteen solenoids which push the strings down between the frets. These are controlled by the replacement finger board which is mounted below the neck. It has a double-row of buttons that let the player select the desired chord. One button chooses the key, with a second button acting as a modifier to switch to a seventh cord, or minor cord.

The project, which [Justin] has named folkBox, relies on a microcontroller. We spy an Arduino Mega in one of the build photographs but it will be interesting to see if the final project moves to a standalone chip. He’s set a goal for a more robust version of the build some time this summer.

[via Make]

Making old organs more portable with MIDI

In the 60s 70s and early 80s, roadies would lug hundreds of pounds of musical equipment around to gigs. Although the 8×10 Ampeg bass cabinet wasn’t fun in the least, the absolute worst was the Hammond organ. These behemoths of tonewheel organs sounded great, but moving them was a pain. For better or worse, portable MIDI keyboards caught up with the sound quality of these old electromechanical monsters. Everything is still not right with keyboard players; a good set of organ foot pedals is still hard to come by. To solve this problem, [Jeremy] converted his old Hammond A-100 organ pedals to MIDI giving him all the feel and aesthetics of an ancient instrument without all the heft.

To transform the ancient A-100 bass pedals into a keyboard, [Jeremy] turned to the HighlyLiquid MIDI CPU. This small board provides a few dozen pins to wire up to switches and potentiometers. A new switch assembly was built for the bass pedals using a momentary push button switch under each key. These buttons are wired up to the MIDI CPU, and everything worked out wonderfully.

Although there’s no video of the newly portable Hammond organ in action (something off Zeppelin I, [Jeremy]…) there is a great Flickr photoset of the entire build. Awesome work, [Jeremy]

Sculpting clay with sound

A group of students at the University of Dundee have created this interesting prototype called Sound Sculpted. The goal was to sculpt clay using sound files drive the sculpting arms. Ideally, you would end up with pieces of art that were unique to each piece of music. As you can see in the video (after the break), they did a pretty good job of building this thing and getting the arms to respond to the music. It is almost hypnotizing to watch.

We can’t help but notice that there is a bit of a design issue. Since the 4 arms are fixed vertically, and the clay spins on the same axis they are able to move on, your variation will be very limited. We think this doesn’t detract from the project, but does offer a large area for improvement.

How would you change the sculpting arms or their motion to make each piece more unique?

[Read more…]

Steam fife

This auto-flute does it with steam. Well, electricity gets its piece of the action too as the tone holes are opened and closed using a set of solenoids.

We’re at a loss on how the sound is actually produced. We would think that a penny whistle has been used here, except if that were the case the solenoid nearest the kettle would have no use. Then again, after watching the demo after the break we’re not sure that it does have much of an effect. It may be meant to stop the sound but it doesn’t really work all that well.

At any rate we’d love to see some spin-off hacks. Assuming the plastic can stand up to the steam heat this would be a perfect robot controller for recorder controlled snake. You can get a recorder for a buck at the right dollar store, and solenoids can be made out of simple materials. If you know of a way to produce the sound yourself, all it takes are a few careful calculations to place the tone holes.

[Read more…]

Chess board step sequencer

[tinkartank] wrote in to tell us about the chess board step sequencer he built. It’s a great piece of work that combines the wonderful classical erudition a set of chess pieces confers with modern technological musical equipment such as a monome.

The build began by routing small holes underneath each square and fitting very small and fragile reed switches. Sixty four of these switches are wired into rows and columns then attached to the digital inputs of an Arduino Mega. To close these reed switches, magnets are implanted into the base of each chess piece so whenever a piece is on the board is moved a circuit closes.

On the control side of things, [tinkartank] built a very nice control panel to change the key being played*, the tempo, an ‘arpeggio dial,’ number of steps, and if there is a whole or half step in between notes. With this control panel, [tinkartank] can play just about any scale.

How does it sound? Well, the Arduino Mega outputs MIDI so realistically it can sound like anything imaginable. From the video demo (available after the break), we really like the interface and a reed switch array chess board is slowly climbing up our ‘to build’ list, if only for all the cool stuff you can do with one.

[Read more…]

A locking chest with a musical key

music-detecting-box

[Basil Shikin] was thinking about different types of locks, and was trying to come up with a locking solution that he had yet to see. It dawned on him that he had never come across a lock triggered by music, so he set off to construct one of his own.

He ordered a wooden chest online, then proceeded to piece together the electronics required for the locking mechanism as well as the music detecting logic. Using an Atmega328P paired with an electret mic, his system listens for a particular tune (the Prelude of Light from the Ocarina of Time) to be played , which triggers a tiny servo to undo the latch. To do this, he implemented a version of the Goertzel Algorithm on the Arduino, allowing him to accurately detect the magical tune by frequency, regardless of what instrument it is played on.

Be sure to check out the video below to see his musical lock in action.

[Read more…]