The trials of digital design class

Late last week, we saw a rather clever combination lock build that used only a single 74xx logic chip. [J. Peterson] read this post, and in a battle royale of geek one upmanship sent us a write up of the logic chip computer he built nearly 30 years ago at the University of Utah.

Around 1982 or 1983, [J. Peterson] took the Digital Hardware Lab at the University of Utah. The class was split into two semesters; during the fall semester, students would build a four digit, stack-based calculator that could add and subtract. That may sound easy, but everything – including reading the keyboard, multiplexing LEDs, and performing the mathematical operations – was done with gates and latches.

After Christmas break, the poor souls who had just finished their calculator were presented with another challenge due in four short months. The calculator built during the fall would turn into a full-blown computer, functionally similar to a PDP-8.

After months of work, and seeing the 70 people who showed up on the first day of class in September dwindle down to a handful in late April, [J. Peterson]’s computer was complete. The test program ran through a couple iterations, and the computer was immediately disassembled.

An awesome tale of digital design from only a generation ago. And you thought Verilog was hard.

Building a combination lock with logic chips

The component gods must have smiled on [Darrell], because he recently ran into a cabinet full of 7400-series logic chips for sale at his local college surplus. All the regulars were there – flip-flops, logic gates, and SRAMs – in DIP packages. the 7400-series of logic chips gets very esoteric as the numbers increased, so when [Darrell] found a 74ALS679 address comparator, he didn’t quite realize what he had. After a quick review of the relevant datasheet he had a fairly good idea of the actual function of this chip and decided to make a combination lock.

From the datasheet, [Darrell] figured out how this small logic chip can compare two 12-bit addresses with only 20 pins: each of the 12 address pins are hardwired to match a single four-bit value. If the four-bit ‘key’ is set to 0110, the first six address pins are tied low, and pins 7-12 are tied high. After wiring up his address comparator to a trio of Hex dip switches, [Darrell] had a combination lock that used the word ‘FAB’ as a key.

In the 7400-series of logic chips, there are some oddballs; the 7447 seven-segment display driver is useful, but the 74881 ALU and 74361 bubble memory timing generator aren’t exactly something you would find in a random component stash. If you’ve got a weird logic chip build (there’s a 300-baud modem, you know), send it on in. You can check out an animated gif of [Darrell]’s lock after the break.

[Read more…]