Ask Hackaday: Building nano scale antennas

As an RF engineering student, [Camerin] is usually tasked with pointless yet educational endeavors by his advisor and professors. Most of the time (we hope) he sees the task through and ends up pulling something out of his hat, but a few days ago a professor dropped a bombshell on him. After reading this article on nano scale antenna fabrication, a professor asked [Camerin] if it was possible to build a 3D inkjet printer with a ludicrous amount of accuracy and precision.

The full article, Conformal Printing of Electrically Small Antennas on Three-Dimensional Surfaces, was recently published in Advanced Materials and is available via Google Scholar. The jist of the article is that three-dimensional antennas printed on a sphere approach the physical limits of how good an antenna can be. To test out these small, spherical antennas, the authors of the paper built an extremely high-precision 3D inkjet printer that draws antenna traces on a glass sphere with conductive ink.

The positional accuracy of this printer is 50 nanometers, or about half the size of an HIV virus. The conductive silver ink is delivered by a nozzle with a diameter of 100 to 30 µm and prints onto a glass sphere about 6 mm in diameter. This is a level of precision that companies and research institutions pay top dollar for, so we’re left wondering how the authors built this thing.

We’re turning this question over to the astute readers of Hackaday: how exactly would you build a 3D inkjet printer with this much accuracy and precision? Would it even need to be that precise? Post your answer in the comments.

Handheld CNC fabrication

While loading a 3D model into a CNC program and letting a machine go to town on a piece of stock is awesome, there’s a lot to be said about the artistry, craftsmanship and tactile feedback of carving a project by hand. [Amit Zoran] and [Joe Paradiso] created a nice bridge between these two approaches with their hand-held, but still digitally controlled milling device they call The Free D.

The Free D looks like your run-of-the-mill handheld Dremel tool with an engraving attachment and a few extra servos attached for good measure. These extra parts serve a purpose: the tool actually keeps track of its own orientation in 3D space. With the help of a few magnets underneath the work piece, the Free D sends its orientation back to a computer running a CNC program. When the computer detects the engraving attachment is getting too close to the desired shape, the Free D automatically retracts its own tool head.

Given the insanity or expense in building our buying a mill with six degrees of freedom, the Free D looks like it could be a useful tool in a few model maker’s toolboxes. Check out the demo video of the Free D after the break.

[Read more…]

CNC Light Painting

Light painting is a technique where a shape is drawn with a light source while a camera is taking a very long exposure shot of it. To do this well by hand would take a lot of skill, so I naturally decided to make my “light art” with a CNC router.

Using this technique, the LED light is treated just like an engraving bit would be under normal circumstances. The difference is that the Y axis is swapped with the Z axis allowing for easy movement in the plane that you see displayed in the picture above. This allows the old Y axis to switch the light on and off in the same way that an engraving bit is lifted to stop engraving and lowered to start (explained here). Instead of a bit though, it’s a switch.

Be sure to check out the video of the router in action (with the lights on) after the break: [Read more…]